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Abstraet Weconsider oriented self-avoiding walks on the square lattice withdifferent energies 
between steps that are oriented parallel or antipard4 across a face of the laltice. Rigorous 
bounds on the free energy and exact enumeration data are used to study the statistical mechanics 
of this model. We conjecture a phase diag” in the parallel-antiparallel interaction plane, and 
discuss the order of the associated phase. transitions. The question, raised by previous field 
theoretical considerations, of the existence of an exponent that~varies continuously with the 
energy of interaction is discussed at length. In connection with this we have also studied two 
oriented walk fixed at a common origin: this being the simplest model of branched oriented 
polymers in two dimensions. The evidence, although not conclusive, tends to support the field 
theoretic prediction. 

1. Introduction 

The statistics of flexible long-chain polymers in dilute solution is a subject of continuing 
theoretical interest, and the consideration of models that describe a situation where 
the effective forces between different (asymmetric) monomers depends on their relative 
orientation in space has received recent attention El]. Oriented self-avoiding walks (these 
are self-avoiding walks (SAW) with a direction attached to the whole walk, which in turn is 
associated with each step of the walk) without interactions [2] have been studied previously 
in connection with a model of oriented polymers (such as A-B polyester). Miller [Z] 
identified these walks with a complex O(n + 0) field theory, in an extension of the self- 
avoiding waWO(n + 0) field theory correspondence of de Gennes [3]. 

An exciting set of predictions has arisen from conformal field theory in two dimensions 
[l]. These results flow partly from the work of Chaudhuri and Schwartz 141. The most 
intriguing result is the prediction that if one considers the problem of oriented self-avoiding 
walks with a short-range interaction between sections of the walk that are oriented parallel 
to each other, the exponent associated with the partition function (usually denoted y )  
depends continuously on the temperature (at least for a repulsive energy), while the exponent 
associated with the radius of gyration (or size) of the walk (usually denoted U) is constant 
in the same range of temperatures. 

11 E-mail: ~e~@mundoe.maths.mu.or.au 
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In this paper we consider a lattice model of oriented polymers in two dimensions which 
have two types of monomer-monomer interaction depending on their relative orientation in 
space. We consider the monomers as situated OR the b o d  of a SAW constructed on a~square 
lattice, and simply add a direction to the walk to give each step an orientation. Interactions 
are considered between bonds of a wak  that lie on the opposite edges of any face of the 
lattice. An oriented walk with the two types of interaction (IOSAW) is shown in figure 1. 
An energy - E ~  is associated with parallel pairs of bonds which are indicated by the wavy 
lines on figure 1, while an energy - E ~  is associated with antiparallel pairs of bonds which 
are indicated by the crosshatched lines. We will also consider two IOSAW fixed from the 
same origin: these are called interacting oriented two-legged stars (102s) and an example is 
shown in figure 2 (also with the interactions illustrated). 

Figure 1. An oriented self-avoiding walk on 
the square lattice with parallel (wavy lines) 
and antiparallel (cross hatched lines) interactions 
identified. An energy -sP (-ea) is associated 
with each pair of parallel (antipanllel) bonds. 

Figure 2. An oriented two-legged star with the parallel 
(wavy lines) and antiparallel (cmss hatched lines) interactions 
highlighted, The origin is clearly identified. 

We will prove some rigorous results, develop some heuristic arguments and analyse 
various exact enumerations in an attempt to map out the phase diagram of the model 
described above, as well as investigating the field theoretic predictions. 

The paper is set out as follows. In the next section we define the partition function 
and other quantities of interest in the IOSAW model and state various predictions about 
their behaviour. We then prove some rigorous (and semi-rigorous) results concerning the 
free energy of IOSAW in section '3.  section 4 is a technical one explaining the exact 
enumeration of various quantities  we^ have calculated for IOSAW and 102s. The analysis 
of these enumerations in relation to the exponent y is discussed in some detail in the 
following section (section 5). The qualitative phase diagram is mapped out by calculating 
the specific heat from the enumerations while various heuristic and exact results are used 
to conjecture an exact phase diagram in section 6. We end with a summary and cautionary 
statements about our results. 
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2. The model 

The partition function of any of these interacting oriented problems is given by 

where the sum is over all allowed values of the number of parallel interactions, mp, and the 
number of antiparallel interactions, ma, and gn(mp, ma) is the number of configurations of 
length n with mp and ma parallel and antiparallel interactions respectively. For a two-legged 
star n is the total length of the two 'arms', and interactions are considered both between 
different steps within an arm and between steps in different arms equally. The convenient 
parameters Bp and pa are given by pp = and pa = p~~ where -&p and -E, are the 
energies of a single parallel and antiparallel interaction respectively and p is the inverse 
temperature. The average energy is given by 

( E )  = -(Epmp-+ &,ma) (2) 

and the specific heat per step by 

The reduced free energy per step in the thermodynamic limit is 

(4) 
I 

K(Bp. pa)  = ;:&; log[Z,(Bp, Bdl. 

Another quantity we shall be interested in is the mean-square end-to-end displacement ( R i )  
which is a function of 6 and 0% also. We will consider these quantities for three cases: 
open walks; closed walks (or loops); and two-legged stars. Where necessary for clarity we 
shall denote walks, loops and stars by the superscripts w, 1 or s respectively (e.g. K~ is the 
free energy for open walks). 

We will examine the case where E~ = 0 in some detail, which we call the parallel 
interaction model (note that this does not mean that antiparallel interactions are forbidden, 
only that their energy is zero). For this restriction the average energy is simply ( E )  = 
- ~ ~ ( m , ) .  The case of E* = is a minor variation of the usual interacting self-avoiding 
walk problem (interactions are between bonds rather than sites). 

It is expected that for some region around the origin of the CS,, pa) plane the partition 
function behaves like 

Zn(Bp. pa) - &"nY-' (5) 

as n + W. This should be true throughout the quadrant (pp < 0, pa < 0). When pa = pp 
it is assumed the A and p (the connective constant) depend on the temperature while y 
does not At the free SAW point 0. = pp = 0 we shall denote the connective constant p by 
ps. However, the work of Cardy [l] predicts that y = y(&) is a non-constant function of 
pp when pa = 0 (at least for negative values of pp). For negative values of pp it is rather 
p that is constant, as we shall prove below. The change y(0) - y ( p P )  is expected to be 
positive as y(pp) is expected to increase monotonically with pp. Hence, y(0) - y( -m)  is 
greater than y(0) - y(pP) for -w < ,!Ip < 0. The accepted value of y(0) is 43/32 [5]. 

More precisely, for pa = 0, Cardy [l] predicts that the scaling dimensions xq of 'charge' 
q associated with the vertices of an oriented star polymer are given by 

xq(Bp)  = ($ + b U B p ) ) q 2  - (6) 
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where A@,) is a function of pp having the opposite sign to its argument (therefore being 
0 at 0 argument) and probably monotonic. Further, the partition function exponent y~ of a 
L-legged star polymer of oriented arms is given by 

(7) 

For a single oriented polymer the exponent y is y(&) = u(2 - 2x1 (j3,)). Let us define the 
change in y~(,¶,) as h y ~  = y ~ ( 0 )  - y ~ ( j 3 ~ )  then from (6) we have 

(8) 
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YL(B,) = u(2L - X L ( B P )  - LXlG6,)). 

AYI = 4 ~ W 4 0 )  - W p ) )  

AB = 1 k ~ ( k ( O )  - W p ) )  

and 

(9) 
hence 

-= 3, 
A n  

This result allows a finer check on any confirming results we might produce to support the 
predicted change in y for walks, since (10) predicts that the change in y for two-legged 
stars should be exactly three times larger than for walks. 

A related prediction concerns the number of parallel contacts. Restricting ourselves to 
the parallel interaction problem (B. = 0) and, assuming the necessary Tauberian theorem, 
differentiating equation (5). and normalizing with the partition function, we obtain 

as n + CO. Now, if p is a constant then 

(m,) - y'(&)logn (12) 
for pp  < 0 (the prime denoting differentiation). Hence, one test of the Cardy predictions is 
to calculate (m,) at the free SAW point 6 = Sa = 0 as this should grow logarithmically in 
n and the amplitude should give the change in y near the origin. This second observation 
serves as a check on any values of y calculated directly for the partition function. 

Simultaneously, it is expected that the mean-square end-to-end distance of the IOSAW 
scales like 

(R:) - BnZY (13) 

as n + CO, with U a constant in some region around the origin including the quadrant 
(Bp < O,Ba < 0). This value of U can then be inferred from its value at the point 
Bp = pa = 0, given by Nienhuis [5]  as U = 3/4. In particular, this should be true for 
the whole of the line Bp 6 0, pa = 0. We then have a situation where for the negative axis 
one exponent, U, is a constant while another, y ,  varies continuously. 

One question that we shall tackle in this paper is whether this scenario is true for 
pa = 0, or more simply whether ~ ( - c o )  # y(O)? The other topic discussed will be a 
general elucidation of the phase diagram in the (Bp, pa) plane. If pa = pp one obtains a 
model of the @-point collapse transition which should occur at some attractive value of the 
interactions. On the other hand a large value of pp at fixed pa favours compact, spiral 
configurations. Hence on the line B. = 0 there should be a transition at some positive value 
of & to a phase dominated by such configurations. In fact, we will show in the next section 
that there must be at least one point of non-analyticity in the free energy on this line. 
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We begin by noting that oriented loops do not contain any parallel pairs of bonds and 
so all quantities calculated from only loop configurations are independent of &. Hence 

Let us consider the reduced free energy per step, ~ ( 0 ~ .  pp). The limit (4) is known 
to exist at the free SAW point for open walks and loops (a reformulation of these proofs, 
originally by Hammersley, is given in the book by Madras and Slade [6] with references). 
It is also known to~be  the same positive value, which is given by logps. We begin by 
restricting ourselves to the 'parallel problem' pa = 0. 

Let Bp < 0 and &(mp) = E,, gn(mp. ma) then 

z:Gs,. Pa) = Z!m.  

provided at least one mp z 0. Also, the set of oriented loops (oriented rooted polygons) of 
length n + 1 is in one-to-one correspondence with oriented open walks of length n whose 
starting and ending points are one lattice spacing apart oust remove the last step of the 
polygon to make a walk and vice versa. These walks clearly do not possess any parallel 
interactions, and so they form a proper subset of the number of open walks without any 
parallel interactions (a rod configuration is also in this set). Hence, 

Considering both the above inequalities and then taking logarithms gives 

log(z;+,(o)) < Iog(Z,WG6p. 0)) < log(Z,W(O, 0)). 

K ( B ~ ,  0) = logpL, 

ZnW(Bp, 0) > Z,"(O> 0) 

IC(&, 0) > logps 

(16) 

(17) 

(18) 

(19) 
However, there are other bounds one can find assuming that the walk free energy 

exists. These are predicated on the h fact that the maximum number of parallel interactions 
mry(n) - n as n + CO. For any n, let k be the largest integer such that k2 < n. Now 
consider oriented walk configurations of length k2. There is one configuration which is a 
tightly bound square spiral that has k2 - 4k + 4 parallel contacts. This is constructed from 
the origin by a single step in some direction followed by a step to the left followed by two 
steps to the left of that, and then again, then three steps for the next two left turns, etc (one 
could equally well choose all right turns). By extending this configuration to length n in 
such a manner that it keeps its spiral shape, we see that 

Taking the limit n + CO proves that the free energy Qp, 0) exists and is equal to 
for - CO c pp < 0. 

For pp > 0 it is true that 

and so if one assumes that the free energy exists in this range one has 

for 0 < pp < CO. 

n - 6n"' < k2 - 4k + 4  < mpmaX(n). (20) 
It is clear thzt m y ( , )  < n and so 
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Now, 
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z:(pp, 0) = Cia(mp)eaPmP z i,,(mFn) ehm? 
mn 

as the partition function is a sum of positive terms, so 
K ( p p ,  0) 2 Bp. 

Also, defining g, = Em, $(mp). 

since g, > g,,(m,), and hence 

These bounds are illustrated in figure 3. 
K(& 0) < pp + 1OgPs for 0 < Bp < 03. (W 

Figure 3. This figure illustrates the hounds un 
the (reduced) free energy x(&)  of the parallel 
interaction model (b. = 0) plotted agaiinst pp (bold 
lines). It also gives a generai scenario (broken 
line) for the behaviour of K(BP) where it has one 
singularity (the point indicated)-it must have one 
non-analytic point but m y  have more than one. 
For negaiive values of pp the value of E(&)  is 
constrained to be log!+ 

For pa # 0, and fixed, the above bounds on the free energy as a function of pp still 
hold with the point pp = pa taking the place of pp = pa = 0. However, we no longer know 
that the free energy exists at this point, although it would be commonly accepted among 
physicists that it does! The following can be deduced assuming that the free energy exists. 
First, for all pa 

(26) 
This can be proved using a simple generalization of the argument given above for the case 
with pa = 0 and uses the fact that removing a bond from a loop removes a maximum of 
two antiparallel contacts. In fact, this result is implied if one accepts that the free energy 
of walks and loops are equal since the free energy of loops is independent of pp. However, 
for pp > 0 it can be shown in a manner similar to above that 

and this implies that the walk and loop free energies must differ for pp large enough. Also, 
for all pp and pa, 

&Jp. Pa) = Ga, Pa) for - 00 < Bp 6 Pa. 

K(fip. pa)  b BP (27) 

K(pp. pa) > K(&,pa). (28) 
These results imply that for any fixed value of pa the free energy K(& Ba) has at least 

one non-analytic point as a function of Bp. The simplest scenario imaginable is that there 
is only one such point and further that this point is given by the equation 

B p a )  = 4% P a )  (2% 
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where pi denoFs that single transition value of the interaction parameter pP. We will argue 
later that this IS a likely scenario! Other, more complicated, possibilities are as follows. 
There could be a single non-analyticity of K at a positive value of pp smaller than that given 
by the above. This must therefore correspond to the spiral collapse transition, and it could 
be of first or second order. However, we shall argue that this possibility is unlikely since 
it would require the spiral phase to have a non-zero O(n) (total) entropy in addition to its 
energy per unit length. Alternatively, there could be more than one point of non-analyticity, 
with the one at the smallest value of &, not corresponding to the collapse transition. In that 
case the latter could occur at a value of pp larger than that given by (29), and it could be 
fist or second order. This possibility is unattractive because there appears to he no physical 
reason for any non-analyticity arising apart from at the collapse transition. 

4. Exact enumerations 

4.1. Calculation of series 

We have enumerated oriented walks, and oriented stars with two arms, on the square 
lattice. The basic algorithm is the simple backhcking method 171. However, as all 
our enumerations have been carried out on a multiprocessor Intel Paragon supercomputer 
we were able to significantly enhance the speed of the algorithm by dividing up the 
enumerations among the available processors. When all possible symmetries on the square 
lattice for walks ax exploited, the total number of distinct configurations of length 5 is 
36 (as opposed to 284 without exploiting symmetry). For each particular five-step walk 
we programmed its configuration into the code running on a different processor. We did 
this so that each (of 36) processor used counted only those configurations containing a 
particular fivestep pattern at the beginning of the walk. Except for some final additions that 
required communication among the processors the algorithm was nearly fully parallelized. 
We obtained a parallelization of about 86%. 

Our algorithm counted the number of walks and stars, g.(m,, ma), with m, parallel and 
ma antiparallel interactions along with a caIculation of the sum of their square end-to-end 
displacements ri(m,, ma). We were able to obtain all walks of length n = 29~and stars 
of total length n = 27. These enumerations took 116 and 151 h of CPU time respectively 
for walks and stars.. These results were checked completely independently for walks up to 
n = 24, using a backtracking algorithm on a Sun workstation. 

The sum over ma can be performed if one is interested only in pa = 0 and these series 
are given in tables 1 and 2t. These coefficients can be used in the following way to obtain 
the quantities of interest. For both walks and stars, the partition function for B. = 0 is 
given by 

i.(pP) =z~(B~,o) =Cin(m,)epomp (30) 
m" 

while the mem-square end-to-end distance for 0% = 0 is given as 

t The full series can be obtained via e-mail to tonyg@mundoe.maths.mu.oz.au 
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Table 1. The enumerations for open oriented walks of lengths n = 1 to 29 in the case of the 
parallel interaction problem. One quarter of the number of walks $(mp)/4 of length n with mp 
parallel interactions and one quarter of the mal  square end-to-end distance OF walks i:(m,)/4 
of length n with m, parallel interactions are given. 

IOSAW 

n mp L(mp)/4 6(mp)/4 

I O  1 1 

3 0  9 41 

5 0  71 679 

7 0  543 8447 

9 0  4059 91 I07 
1 8 40 

11 0 29 945 901 729 

13 0 218959 8 425 599 
1 1288 14760 
2 128 960 

15 0 
1 
2 
3 
4 

17 0 
1 
2 
3 
4 

19 0 
1 
2 
3 
4 
5 
6 

21 0 
1 
2 
3 
4 
5 
6 

1 590 803 75542739 
11960 186600 

1346 14458 
36 484 
4 20 

11501007 656574599 
102488 2087160 
12382 181950 

692 11092 
100 980 

82824995 5569812347 
837 204 21 529 156 
106986 ~ 2054706 

8648 I66040 
1282 18 170 

32 400 
8 40 

594580341 46338890829 
6630148 209613636 

887978 21490010 
88712 2 047 720 
13400 247 664 

768 12800 
160 1424 

2 0  

4 0  

6 0  

8 0  
1 

10 0 
1 

12 0 
1 
2 

14 0 

3 8 

25 176 

195 2452 

1475 28112 
4 8 

10969 289084 
16 240 

80 665 2772904 
552 4064 

16 144 

588413 25 340 572 
1 4848 54528 
2 270 3240 
3 20 160 

16 0 
1 
2 
3 
4 

18 0 
1 
2 
3 
4 
5 

20 0 
1 
2 
3 
4 
5 
6 

2 2 0  
1 
2 
3 
4 
5 
6 
7 

4267549 
40316 

3136 
324 

8 

30806097 
324 100 
30682 

3588 
196 
20 

221 570 087 
2 542 512 

273 664 
34672 

2924 
356 

16 

1588892227 
19.587076 
2310642 

311984 
33404 

4428 
324 
36 

223 467 640 
637400 
48280 

3592 
72 

1917488084 
6793752 

595 104 
52288 

2960 
136 

16100667256 
67198696 

644600 
55 584 

4304 
144 

132 837 329 628 
644 303 064 
67 101 896 
7194912 

771 224 
74296 

4480 
240 

655aooo 
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23 0 
1 
2 
3 
4 
5 
6 
7 
8 

25 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

27 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

29 0 
1 
2 

10 
11 
12 

4257153519 379418996743 24 
51 379748 1954239492 
7 159090 212 333 074 

820700 U577372 
127336 2 929 944 
10996 227412 

1992 27912 
56 696 
16 80 

30413 572867 
391 860612 
56 483 202 
7 133984 
1 141 204 

123804 
21 430 

1328 
288 

8 

216867806851 

3065516572683 26 
17 615053412 
2 008 548 714 

231238944 
31765052 
3 100588 

409630 
20 192 

2512 
104 

24489 537 270 883 28 

0 11365906867 I080126940904 
1 148817252 5896747672 
2 18815380 650 879 520 
3 2675412 74804088 
4 332200 9 135 048 
5 46 848 997 352 
6 4762 86776 
7 516 6472 
8 28 
9 4 

0 81134673811 
1 1118471472 
2 149323228 
3 22168440 
4 3 043 658 
5 452576 
6 55 378 
7 7256 
8 628 
9 108 

256 
32 

8 675 779 763 380 
52382283568 

6062674 824 
737346552 
98205200 
11 736512 
1273 968 

116816 
8312 
968 

0 578138389481 68960647337768 
2 952 534 332 154 553 727SW 1 8333319312 454210850712 

438258816 18397949741 2 1162706 I68 54701OM072 
59 500600 22A6701928 
9808858 , 373464450 
1 229 096 36493368 

211412 5098244 
19 116 368620 

3582 47598 
208 3104 
36 228 

1 543 880 629 933 
22 035 454 044 

335579 3648 
481 959556 
81 693978 
11297676 
1964474 

220416 
39 372 

3640 
564 

24 
8 

193750855625205 
1326500048 108 

163197 192464 
20975284964 
3 140425418 
391 447 100 
57 355 802 

5264576 
716612 
61 224 

5396 
328 
104 

3 
4 
5 
6 
7 
8 
9 

10 
11 

179025656 
26432542 
4113356 

568528 
79776 

9242 
1428 

56 
16 

6973388 848 
988 534 848 
126922432 
15 863 280 
1670376 

156 408 
18 392 

624 
136 

4.2. Analysis 

After construction of the partition function (mean-square end-to-end distance) at some value 
of the interaction parameters, the corresponding exponent y (2v) was investigated utilizing 
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Table 2. The enumerations for (open) oriented two-legged stars of lengths n = 1 to 27 in the 
c s e  of rhe parallel interaction problem. One quarter of the number of stars &(mp)/4 of (total) 
length n with mp pamllel interactions and one quartu of the total square end-to-end distance of 
stars ?f(mp)/4 of length n with mp parallel interactions are given. 

, ,. 
102s 

, .  
102s 

n mp in(mP)/4 ?f(mp)/4' n mp .in(mP)/4. 2(mp)/4 
.22 ,, ., , ,  . , , , ., , , , , , , . , , , . , , , ,, , ,  

I O  2 2 2 0  9 

3 0  32 136 4 0 109 692 
1 4 12 1 16 88 

5 0  358 3094 6 0 1133 12722 
1 64 472 1 216 2152 
2 4 36 2 16 200 

7 0  3528 ~ 49184 8 0 10709 181480 
1 740 9092 1 2332 35496 
2 72 1016 2 254 47.40 
3 4 76 3 16 376 

9 0  32266 646154 IO 0 95487 2233 170 
1 7412 133 156 1 22528 477 104 
2 908 17 364 2 2964 65 040 
3 80 1 944 3 280 7688 
4 4 132 4 16 616 

11 0 281332 ~ 7539916 12 0 818181 24936756 
1 68672 1668 136 1 203916 5 662 144 
2 9692 . 239692 2 30080 839032 
3 1088 31 664 3 3524 114 632 
4 88 3320 4 312 12824 
5 4 204 5 16 920 

13 0 2372066 81125738 14 0 6811357 259953914 
1 605680 18896240 1 1767972 61762992 
2 93964 , 2906180 2 282444 9 723 496 
3 12 176 422480 3 37788 1446160 
4 1264 53760 4 4244 192584 
5 96 5208 5 344 19880 
6 4 292 6 16 1288 

15 0 
1 
2 
3 
4 
5 
6 
7 

19511 564 822836 I56 
5159792 ~ 199396528 

856404 32288844 
122060 ~ 4999852 

14952 ~ 714688 
1504 86264 
104 7672 

4 396 

16 0 55482625 2574520744 
1 14866224 633818392 
2 2521324 104575176 
3 369360 16487 168 
4 47712 2 428 008 
5 5024 306272 
6 376 29112 
7 16 1720 

differential approximants [8]. This method involves fitting the available series coefficients 
sequentially to linear, quadratic and higher-order recurrence relations of a specific form 
which can then be solved, giving linear homogeneous differential equations with polynomial 
coefficients. The solution of these equations allows us to estimate the critical point (which 
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Table 2. (Continued) 

17 0 
1 
2 
3 
4 
5 
6 
7 
8 

19 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

21 0 

157466362 
42 830 048 
7481440 
1144440 

157032 
18884 

1720 
112 

4 

1251 745 156 
348452556 
63 383 944 
10244772 
1 525 636 

206012 
22 864 

2036 
120 

4 

9828 842750 

7979393866 18 0 
1995912944 1 

336721760 2 
54635 112 3 
8 429 896 4 
1164812 5 

130488 6 
10 776 7 

516 8 

74695658044 20 0 
19 179211 604 1 
3 346 568 312 2 

563 293 156 3 
91 821 956 4 
13865308 5 
1803312 . 6 

190 660 7 
14584 8 

652 9 .  

679593229246 22 0 

444313587 
122 161 464 
21 707 340 
3 397 164 

483 078 
59 948 

5972 
408 

16 

3509 847821 
985932348 
181882272 
29 952 024 
4577618 

635440 
75 144 

6988 
440 

16 

27416700147 

24505683 562 
6209885320 
1064065048 

175 208 000 
27615652 
3 929 440 

465 040 
40 776 

2216 

225997101 028 
58666824000 
10 372945776 
1767614056 
292 866 008 
45 226 944 
6 113 400 

678 232 
55 128 

2776 

2031 108027406 
1 2789973524 178393992692 I 7842733220 538198519240 
2 524606968 32024938488 2 1492230550 97726183660 
3 88613584 
4 14039136 
5 2063364 
6 262608 
7 28812 
8 2276 
9 128 

10 4 

5554247272 
944112728 
151977100 
21876008 
2719988 

266732 
19 160 

804 

3 256005572 
4 41393562 
5 6229 020 
6 828 246 
7 93 708 
8 8270 
9 472 

10 16 

17129182904 
2950240772 

483465816 
71585412 
9 207 424 

959 180 
72424 

3400 

23 0 76393936468 6039599531780 24 0 212163044863 17866761710728 
1 22049670504 1615798341344 1 61647532900 4819202200448 
2 4262,685728 297226995592 2 12039089638 895407169216 
3 746564464 
4 124218080 
5 19487852 
6 2738440 
7 344 124 
8 34336 
9 2736 

10 136 
11 4 

52862012088 3 2136429452 160725211776 
9290761 824 4 361446000 28562113904 
1570 169 684 5 57840228 4898028968 

243298 120 6 8388 392 775409 184 
110533688 

3 931 920 8 116 838 13460664 
367 504 9 9656 1319088 
24568 10 542 93 792 . 

972 11 16 4088 

33 768 580 7 1084700 

gives the growth constant of the series) and its corresponding critical exponent. 
For each length N ,  a number of approximants were found, with any defective 

approximants being ignored in the subsequent analysis. Any approximant was considered 
defective if there was a singularity on the positive real axis closer to the origin or if there 
was a singularity beyond but close to the physical singularity. In our analysis we have taken 
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Table 2. (Continued) 

n mP in (mp)/4 ;,Z(mp)/4 i mp in.(mp)/4 i,L(mp)/4 
IMS 10z5 

25 0 588682707150 52628502262702 26 0 1628804584207 154343794929098 
1 172388128812 14314983158164 1 479774019936 42285075888720 
2 34123384304 2689802910376 2 95807788074 8016110246356 
3 6160580012 488817785572 3 17493573012 1468723280368 
4 1066842440 88311219792 4 3072124056 267874866528 
5 176292148 15511352276 5 516195828 47627183536 
6 26687132 2541894340 6 80064018 7939041 756 
7 3 703 508 382363892 7 11 390 324 I 220 242 496 
8 434376 50230536 8 1408482 165814436 
9 43788 5625076 9 146412 19245920 

10 3084 490212 10 12060 1 796 704 
11 144 30872 11 560 1 I7 744 
12 4 I156 12 16 4840 

27 0 4503113843288 450988762706944 
1 1335 517 920 776 124473 960’244504 
2 269815586320 23831 141297856 
3 49990905792 -4413 168205768 
4 8950830880 816067121248 
5 1543132656 147914590640 
6 247633380 25334694404 
7 37072832 ~ 4053152856 
8 4884144 582 100736 
9 574076 73 948772 

10 53 188 7799540 
11 3908 . 65412 
12 1 52 38 136 
13 4 1356 

approximants to be defective if they are within a factor of 1.3 of the physical singularity. 
More precisely, approximants with singularities in the complex plane found within a strip 
bounded by f0.05i and [O, 1.3~~1, where xC is the estimate of the physical singularity’s 
position, are considered defective. The non-defective approximants were then averaged, 
with the error given as two standard deviations. As N increases, the values of the exponent 
and critical point are expected to become more accurate, and a weighted average of the 
most accurate values of the exponent with at least four non-defective approximants were 
taken to give an estimate of the exponent for large N .  These values, and a discussion on 
their significance, are given in section 5. 

As discussed in section 6, the specific heat per step Cn(Bp) has been used to probe the 
possible onset of any phase transitions. We initially set B. = d,pP (since for a system with 
(non-zero) fixed energies and E, one has d, = Ea/Ep), but such rays emanating from the 
origin are close to tangential to part of a phase boundary. Accordingly, we have also set 
p. = dlpp + dz, and for particular values of dl and dz made simple plots of Cn(pP) against 
pp so as to find the maximum of C,(p,) along a line in the (0,. &) plane. This allows us 
to gain a full two-dimensional representation of the specific heat behaviour (see figure 7) 
by choosing different values of dz. Figure 7 has been produced from the choice dl = -1 
and dl = 4, and varying d2 over a range of values, in order to cover the plane. 
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We will only consider the parallel interaction model with pa = 0. Although a variation in 
y is predicted to occur for other values of pa it is at = 0 that the value of the connective 
constant is most accurately known, and this will help with the analysis. 

We utilized unbiased second-order differential approximants of the generating function 
G(x)  = E, Z,x" of the (walk) series 2:nwcS,) in order to determine the critical point 
x,@,) = I/p(p,)  and associated exponent ycB,) for various values of p,,. Initially we 
found that for pp = 0 (the free SAW point) x,(O) = 0.379 0520(4), which may be compared 
with the best numerical estimate available of 0.3790524(5) [9], and y(0) = 1.34358(22) 
which may be compared to the exact value of yeract,w(0) = 43/32 = 1.343 75 (a difference 
of 0.000 17(22)). In figure 4 we show a plot of yexact.'"(0) - y ( p p )  against pp for walks, 
and ~[yex"' .s(0) - ycS,)l for stars, obtained from this type of analysis, where for stars 
yexa,s(0) = 75/32 = 2.34375 (see equations (6) and (7)). As one can see y(&) seems to 
be monotonic so we shall concentrate our discussion on the case pp = -CO. Our estimate 
for y ( - w )  is 1.3347(33) which implies that yexac',w(0)-y(--ca) is 0.0091(33). This is not 
particularly large! Moreover, there is a small apparent shift in the estimated critical point 
to xc(0) - xc(-0o) = 0.000017(13) which gives one some apprehension about attaching 
significance to the shift in the exponent. 

We also analysed the series with the coefficients &(O)/&(-m). This series was 
estimated to have a critical point at 1.000063(19) (by theory it should be exactly 1) and 
an exponent (which should be identified with y(0) - y ( - m ) )  of 0.0115(15). Hence this 
gives a slightly larger result for the change in y than does the Z, series alone, though with 
overlapping error bars and a slightly worse critical point estimate. It appears that, without 
the knowledge of Cardy's prediction, such an analysis of IOSAW is unlikely to prompt one 
to suggest that y is varying with W .  However, given the prediction, neither does it rule 
it out, and we feel that the further considerations (below) tip the balance in the positive 
direction for such a prediction. 

One can compare the behaviour of these results to a corresponding analysis of the 
end-to-end distance series (R:). The exponent w is usually less well behaved, and so it is 
not surprising that we estimate v(0) = 0.7458(6) and U(-CO) =~0.7335(11) with critical 
points at 0.999 936(16) and 0.999 757(34) respectively. While the exponent values do not 
necessarily inspire confidence that our perceived change in y reflects the real situation, it 
does hint that the critical point change is small enough to be considered insignificant. We 
also mention that we attempted to use biased approximants for many of these analyses but 
were hindered by the fact that this consistently gave rather few non-defective approximants. 
Worryingly, however, these approximants that did survive gave a change in y that was even 
smaller than given above from the unbiased results. 

Our first consistency check (for walks) was to estimate y'(0) from our plot of y (Bp)  
and also from the local slope of the graph of (m,} against log(n) for the largest values of 
n available. The first gave y'(0) = 0.014(4) while the second gave 0.013(5). The errors 
quoted are simple statistical errors: the first deduced from the errors in the values of y(&) 
and the second from linear regression on the largest four values of n. They should not be 
invested with too much authority! One can, for example, change the value of the slope 
obtained  within the errors quoted) by plotting (m,) against log(n -a) for some constant a 
in the (reasonable) range -4 to 7. However, the values give some confidence that the theory 
developed in section 2 is consistently (if only weakly) confirmed by our walk enumerations. 
On the other hand it would be surprising if there were not significant corrections to scaling 
even for moderate values of n in the (inp) plot and so the value of the slope estimated 
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without extrapolation is likely to contain systematic error. Figure 5 is a plot of (mp) against 
log@) for walks and stars.. Of course, the divergence in (mp)  as n becomes large indicates 
that y should change (assuming the form (5)). More generally, if mp grows without bound 
in any fashion, it indicates that the asymptotic form (5) for the weighted number of walks 
(with y independent of BP) cannot be comect. 

0.015 

0.01- 

0 . 0 0 5 ~  

0 ._.".""" -._ 

I! . 
k 

-0.005. 

-0.01 - 
-0.015. 

-6 -0.02 ; 
-4 PP 

Figure 4. A plot of (43/32-yw(Bp)) against 
& for w a l k  (diamonds) and f(75/32 - 
yS(Bp)) against & for stan (squares) 
obtained from analysis of the series for 
Zn(pP). The factor of f highlights the 
field theoretic prediction that the ratio of the 
changes in yw and y' should be 4. 

We then repeated this exercise for the two-legged star enumeration data. This perhaps 
provides the strongest evidence that the theory is correct. We obtained a change in $e 
exponent y s  that gave the estimate $ycnc'3s(0) - ys(--OO)] = 0.0116(24) using the Z i  
series, and $[ys (0 )  - y s ( - w ) ]  = 0.0113(23) using the ratio %(O)/e(-co). These 
compare favourably, within error bars (see also figure 4 which uses the 2; series over 
a range of &), with the changes given above for yexact.w(0) - y"(-co) from i?: and 
y"(0) - y"(-co) from the ratio i , " (O) / i , " ( -oo)  (that is, 0.0091(33) and 0.0115(15) 
respectively). The value of ~ ' ( 0 )  was estimated to be 2.34338(89) compared to the exact 
value y-'J(O) of 75/32 = 2.34375, while xf(0) = 0.3790511(39) which should be the 
same as for walks. The critical point xi(-w) was estimated to be x,(O) - xc(-03) = 
0.000061(44); a slightly larger change than for walks. The values of u5(0) = 0.7485(18) 
and us(--OO) = 0.7647(12) differ from the exact 0.75 by about similar (absolute) ~ m u n t s  
to those obtained in the walk case (see above), which indicates that the factor of three found 
in the changes in y between walks and two-legged stars is not simply due to less accurate 
estimation for stars. 

Again we considered the value of y'.'(O) estimated from the plot in figure 4 and 
compared this to the slope of (mi) against log@) (see figure 5) .  This gave 0.07(2) for 
the first compared to 0.08(2) for the second method. As for walks the errors should not 
be invested with too much significance. This is less convincing than in the walk case but 
there is a clear curvature left in the plot of (mi) against log(n) and so this could be due 
to the corrections to scaling being stronger here. On the negative side these estimates are 
quite far from three times their walk cousins (which require values closer to 0.04 to 0.05) 
but as noted there is curvature in the plots, which is in the direction required to bring the 
numerical results into registration with the theory. Once again, we note that while biased 
approximants were attempted, the results suffered from a lack of acceptable approximants. 

In summary, we conclude that while a small change in y has been found from a 
differential approximant analysis of partition function series, the modest length of the series 
precludes any conclusive statements. Supportive evidence for a small change in y arises 
from the analysis of the expected value of the number of parallel contacts and the partition 
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Figure 5. A plot of (mp) against 
log(n) obtiined from exact en!"- 
ation for walks (n ,< 29) and stars 
(n < 27) at the free SAW point (Bp = 
B. = 0). The walk data are multi- 
plied by a factor of 10 to place them 
on the same scale. 

function series of two-legged stars. .However, we do point out that the change in y is 
numerically small. 

6. Phase diagram 

6.1. Parallel interaction model 

We begin by considering the parallel interaction model with pa = 0. Assuming that the free 
energy exists the rigorous results of section 3 imply that there must be at least one point 
of non-analyticity in the free energy. Of coufse, whatever transition does take place is an 
unusual one since the free energy of loops is constant in pp (there are no parallel bonds in 
loops) and hence for pp greater than the value of the first transition the loop and walk free 
energies are not the same! , 

C 

0 . 6  

0 . 5  

0 . 4  

0 . 3  

0 . 2  

0 . 1  

0 

1 I 

RgW 6. A plot of the specific hear CnWp) 
against Bp for four values of length (n = 
12, 18.24.29). 

In an attempt to find any phase transitions we have tabulated the specific heat per step 
C,(pp) as a function of pp for IOSAW at lengths n = 1 to 29. The specific heat for a 
selection of four lengths is plotted against pp in figure 6. There is a single marked peak 
in the specific heat which is moving closer to the origin as n is increased. Usually it is 
possible to obtain a rough estimate of the specific heat exponent a from data such as this 
and an estimate of the critical temperature [lo]. Any such attempt here has proved futile 
and values of the exponent a thus obtained have been bigger than one. This is because 
the height and position of the peak are changing very rapidly (and erratically) and this 
is an indication that the series are far from the asymptotic regime: However, ,this strong 
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movement of the heights of the specific heat is consistent with a first-order transition at 
about pp m 1. Harking back to the discussion in section 3, the simplest scenario possible 
for the behaviour of the free energy is IC(&, 0) = log p, K ( O , O )  for pp < log pLs and 
~ ( p ~ ,  0) = pp for pp 2 logPS. This would give a first-order phase transition at pp = logPS 
with a jump in the parallel interaction density lim,,,(mp)/n from 0 to 1 as pp is varied 
from below log p., to above it. The enumeration data are consistent with this scenario but a 
more cautious conclusion is the following: there is one transition with a diverging specific 
heat, and it occurs somewhere in the range (0, 2.1), probably near pp = 1 (this conclusion 
is arrived at from the observation that the specific heat peaks are generally moving towards 
lower values of pp as n is increased and for n = 29 the peak occurs approximately at 

On the other hand there is a heuristic argnment as to why the usual collapse transition 
is second order, but the spiral transition may not be. Suppose the usual collapse transition 
were first order, so that close to the critical point there are two coexisting phases, of free 
energies f, and f2 per unit length (where of course f, = f2 at the critical point, but their 
derivatives are not equal.) Then we can imagine a long walk as having some parts in one 
phase and some parts in the other. If we ignore the self-avoidance restriction between these 
different parts, the total partition function is that of a one-dimensional Jsiig model, so that 
the actual free energy is f = - In(e-fi +e-f2). It is easy to check that this has a continuous 
derivative at the critical point, and so it is a second-order transition. Reductio ad absurdum. 
If such an argument applies to the spiral collapse, it is not so straightforward because the 
topological constraints make it difficult for spiral sections to occur in the middle of a walk. 
Indeed, for the chain sizes we have considered in the enumerations, nearly all the parallel 
contacts are close to the ends. This suggests that the spiral transition should be first order 
and rather strong. 

This transition, whatever its order, is between the free SAW phase characterized by U = 
and a phase dominated by tightly bound s p a s  (at least for sufficiently large pp), Since 
tightly bound spirals are compact this phase should have U = $. Given that the number 
of such tightly bound spirals is small (connective constant 1) the ground state will have 
zero entropy per step in the thermodynamic limit. The walk density is an order parameter 
for this transition as is the parallel interaction density. However, more useful may be the 
average winding number per step as an order parameter. This would enable one to clearly 
distinguish between a spiral compact phase and the normal compact phase of the collapse 
transition (pp = pa > Bo). Further work may be able to utilize this observation. 

pp = 2.1). 

6.2. Full model: parallel-antiparallel  interaction^ plane 

In figure 7 we have plotted the loci of maxima of the specific heat for length n = 29. 
This shows that the possible free-to-spiral transition extends along a line essentially parallel 
(though not exactly so) to the p. axis, while the 6'-point peak (a weak singularity) extends 
parallel to the pp axis. We shall argue below that this second phase transition line does 
indeed lie parallel to the pp axis exactly. The free-to-spiral transition line curves away from 
the pa axis when meeting the 6'-line and continues in a duection away from the origin so as 
to separate the normal collapsed phase (large Ba) and the compact spiral phase (large pp). 
The size of the specific heat peak for the collapse-to-spiral and free-to-spiral transitions is 
much larger than the free-to-collapsed &point peak. 

This enumeration evidence along with some heuristic arguments and the free energy 
bounds allows us to predict a phase diagram with some confidence. The enumerations 
suggest that the simple scenario of one transition on varying pp at fixed pa is likely. 
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-6 Figure 7. A plot of the position of the maximum 
-6 -4 -2 0 2 4 6 8 ofthespecific heat forn =29 in the full (Bp.pa) 

Pp plane for IOSAW. 

Moreover, this transition may well be first order. The collapse-to-spiral transition would 
seem to be first order since for large pa the transition takes place at large &. Under these 
conditions the spiral phase and the collapse phase should be close to their respective ground 
states. Now, the (thermodynamic limit) entropy per step of these two states is different (it 
should be 0 for the compact spirals) and so the transition should be first order with a jump 
in the entropy (per step) at the transition. As argued above, the free-to-spiral transition 
should also be first order. The 6'-point is second order and there is no reason not to a s swe  
that this extends along the length of the free-to-collapsed l i e .  

Figure 8 illustrates the conjectured phase diagram we believe provides the most likely 
scenario for this model. p e r e  are three phases: free, collapsed and compact-spiral. The 
free-to-collapsed is exactly parallel to the pp axis and occurs at pa = be. This should be so 
for the following reason. We know that on the line pa = pp there exists the @-point at some 
p'. The free energy at this point is K@',  0'). By the result (26) we have that the free 
energy along the line pa = Be for Bp < Be should also be given by ~ ( p ' ,  Be). Similarly, 
for lines of fixed pa near pa = pa the free energy is constant and equal to K @ ~ ,  pa) for 
pp 6 pa. This means that for a fixed value of pp < p' the free energy on varying pa is 
given by ~ ( p ~ ,  j3,) for pa near pe (at least). The free energy then displays a transition at 
p. = p' and is independent of &. Hence the transition line is parallel to the pp axis for 
pp 6 p'. at least. The equation of the transition line should be analytic (otherwise one must 
introduce a new singularity) until it meets the spiral transition line (at some finite angle) 
and so is always parallel to the pp axis. This result is clear if one accepts that loops and 
walks have the same free energy in the free and standard collapsed phases. 

The spiral transition seems to be a single first-order transition. It is then a simple 
extension to conjecture that this transition takes place at the point of the largest possible 
value of & for any fixed pa, as this would necessarily be first order. This is equivalent 
to the assumption that the compact spiral phase always has o(n) (total) entropy and the 
transition, when it takes place, does so directly to the set of states whose energy differs 
from that of the ground state by an amount 0(1) (which we assume, but certainly have 
not proved, are e"(") in number). This rather strong and unusual assumption is consistent 
with the enumeration data. It is, however, the weakest of our conjectures and it certainly 
may be the case that the transition takes place close to but not exactly at the limiting value 
of pp. Such a weaker scenario is~sketched in figure 3 for the case of pa = 0. Making 
this assumption however implies that the spiral transition line is given by (29). that is 
$@J = ~ ( p ~ . p ~ ) .  Hence for pa = 0 we have $(O) = logPS while for pa = -a 
we have&(-m) = logp,, where pnaw is the connective constant for (bond) neighbour 
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Figure 8. A schematic illusmion of a 
conjectured phase diagram in the (BP.B.) 
plane showing the three phases: free (P); 
collapsed (C); and spiral collapsed (S). The 
dotted line is the normal collapse problem with 
pa = pp and contains the 8-point. 

avoiding walks. The neighbour-avoiding walk connective constant will be different (for site 
neighbour-avoiding walks the connective constant is 2.31592(1) [ll] as opposed to that for 
free SAW which is 2.638 16(1)), though not much so, to the connective constant for free 
SAW. This explains why the free-to-spiral transition line runs almost but not quite parallel 
to the p. axis, for pa negative. 

For large positive p. on the other hand ~ ( p ~ ,  pa) is the (reduced) free energy of the 
normal collapsed phase at very low temperatures. This should be given (approximately) 
by K ( @ ~ .  pa) = pa + log pc where pc is the connective constant for compact walks. The 
equation of the transition l i e  is then pa = pp - log pc. This explains why the transition 
line is moving away from the origin and does not cross the line pa = pP. 

7. Conclusions 

We have considered the statistical'mechanics of XOSAW in the plane of parallel-antiparallel 
interaction. For this model we have given several rigorous results and several semi-rigorous 
results (rigorous contingent on the existence of the free energy). These results and exact 
enumerations have allowed us to map out a phase diagram. Our main conclusion is that 
there are three phases in this plane: the free SAW phase; the normal collapsed phase; and a 
phase dominated by tightly bound, compact, spirals. The transition to this last phase may 
well be first order from either of the other two. 

The question of the continuously varying exponent y is more controversial. Our analysis 
of the exact enumeration data is not unambiguous. It may simply be the case that due to the 
sparsity of parallel interactions in typical SAW configurations of modest length our exponent 
estimates are tainted by large corrections to scaling. In this case maybe OUT sequence of 
estimates has a turning point at some larger value of n. If that is not the case, and assuming 
that there is a change in y on varying pP, OUT enumerations show that it is very small: less 
than 1%. If this variation is real, a theoretical puzzle is presented as to why y'(0) is so 
small. The field theory quantitatively predicts only the~dependence of y on AVp) (see (6)), 
and not the non-universal form of A(&) itself. Nonetheless, it is possible to estimate this 
with various assumptions concerning the continuum limit of the interaction on the square 
lattice, with the result that y'(0) is expected to be about I/(Zx), to within factors of order 
unity. This is much larger than the observed variation. This analytic result is supported by 
an exact calculation for ordinary (non-self-avoiding) random walks with interactions pa and 
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pp (see the appendix). In this model. if pa = -pp then y'(0) = l/(Zn) exactly. 
However, for IOSAW, given that we have rigorously shown that the connective constant 

is unchanging for pp c 0 when Ba = 0, assuming the form (5) (which includes the existence 
of the exponent y),  and acknowledging that the exact enumeration results at least show that 
the average number of parallel contacts (m,) diverges, then y must change with pp (and the 
divergence of (m,) be logarithmic). Conversely, if y exists but does not vary, then (m,) 
should not diverge, or perhaps the form (5)  is incomplete and must be modified with a factor 
l i e  p ( j 3 , ) m .  The first is not supported by the evidence to date, although certainly not 
ruled out and the second is simply too difficult to test. (It could also be~that in the ordinary 
collapsed and free phases (m,) approaches a constant as n diverges but with logarithmic 
corrections; this constant diverging on approach to the spiral transition line.) 

There is a close analogy that gives an argument which sheds light on this question. 
Another oriented SAW problem is that of interacting walks on the Manhattan lattice. On 
this lattice SAW are oriented by default but in the interacting case there are no parallel 
interactions. This is l i e  the restriction pp = -CO although the connective constant is not 
the same as the square lattice SAW value since further types of configurations are disallowed 
(parallel steps across 3, 5, etc faces are also disallowed). This problem has been recently 
mapped to an exactly solvable model at the collapse point [12]. The exponent v is equal 
to the value at the normal 0 point beimg 417 [13]. However, the exponent y = 617 in 
opposition to the accepted B exact value of 8n. This is then an example of a closely 
analogous problem where ,the general flavour of the field theoretic predictions for IOSAW 
seems to hold at the collapse point. One may, of course, ask about the high temperature case 
and it is here that previous series work [14] has given values of y close to the SAW value, 
43/32, similar to our @, = 0. This early work was based on rather short enumerations, which 
would not be sensitive enough to recognize a change in y (from the square lattice value) 
of the magnitude observed here. Indeed, we [15] are currently extending the Manhattan 
enumerations to check this point. 

The avenue is clearly open for some long Monte Carlo simulations to tackle this problem 
fnrther 1161. These simulations are ako being currently undertaken [I61. On the other hand, 
this paper has produced a consistent picture of several of the salient properties of IOSAW. 
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Appendix. Mean numbers of parallel and antiparallel contacts for ordinary random 
Walks 

The problem studied in the body of the paper for self-avoiding walks may be solved exactly 
if the self-avoiding constraint is removed. In this case Z,(O, 0) =-&" exactly, where ,U = 4 
for the square lattice. The mean number of antiparallel barallel) contacts is given by the 
O(pa) (respectively Ow,)) term in the expansion of Zn(pp, pa). Consider first the former. 
This comes from all walks with at least one antiparallel contact, that is a square in which a 
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pair of opposite sides is occupied by antiparallel bonds. There are four possible orientations 
for such a contact on the square lattice. An oriented random walk possessing such a 
contact may be connected up to it in two possible ways, and consists of three independent 
pieces: a section from the beginning of the walk to the first corner of the chosen square; an 
intermediate section connecting the second corner with the thiid; and a final section from 
the last comer to the end of the walk. Let the number of steps in each of these sections be 
nl,  n2 and ng respectively. The O(&) term is then 

8W P ~ ' ~ ~ ~ ( W ~  (32) 

where cn(r) is the number of n-step walks whose ends are a distance r apart. For ordinary 
walks, this satisfies a simple recurrence relation, whose asymptotic solution for r2 << n is 

",+n2+",a-2 

Substituting this into (32) gives 

(1 - & + . ..) . (n - 2 - n2) "-2 2 
-BaPn-l 

" 2 4  nz x (34) 

The O(&) term is similar, except that the central portion of the walk has to connect two sites 
which are a distance J2 apart. The leading term is therefore identical, but the correction 
is greater by a factor of two. In either case, the leading terms behave like n l n n  for large 
n. This indicates that, for ordinary walks, the mean numbers of parallel and antiparallel 
contacts both grow in this manner. In order to compare more closely with tlie case of 
self-avoiding walks, it is necessary to choose Pa = -Bp so as to cancel this leading term. 
The non-leading term is then 

This is still O(n), indicating that the free energy per unit length is still dependent on &, in 
contrast to the self-avoiding case. To compare with the field-theoretic predictions for the 
shift in y ,  however, we should look at the Oann) term in (35). This then gives the result 
y'(0) = 1/(2n), quoted in the text. 

It is possible to study this problem using the continuum approach. For ordinary walks, 
the current--current correlation function (J(r)J(O)) studied in 111 behaves as Inr/r2 rather 
than being a pure l / r 2  power as it is in the interacting theory. This additional logarithm is 
responsible for the n Inn terms found above. However, the field-theoretic calculation of the 
O(lnn) term, at least to first order in &, appears to be identical in both the ordinary and 
self-avoiding walk models. Since the mappings between the lattice and the continuum limit 
should be similar for both problems, this suggests that the result y'(0) = 1/(2x) should 
hold approximately even for self-avoiding walks. 
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